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Using the factorization approach of quantum mechanics, we obtain a family of isospec-
tral scalar potentials for power law inflationary cosmology. The construction is based
on a scattering Wheeler-DeWitt solution. These iso-potentials have new features, they
give a mechanism to end inflation, as well as the possibility to have new inflationary
epochs. The procedure can be extended to other cosmological models.
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1. INTRODUCTION

One of the most active areas of research nowadays is inflationary cosmology,
this theoretical framework solves many classical problems of Standard Big Bang
Cosmology. Recently, observations have confirmed its predictions of a flat universe
with a nearly scale invariant perturbations spectrum. The idea is to introduce a
scalar field (spin-0 boson) and a scalar potential V (φ) which encodes in itself
the (non-gravitational) self-interactions among the scalar particles. This type of
models, have also been used within the so called canonical Quantum Cosmology
(QC) formalism, which deals with the early epoch of the cosmos. Scalar fields act
as matter sources, and then play an important role in determining the evolution
of the early universe, where the quantum fluctuations are the seeds for structure
formation.

Moreover, these models have appeared in String Theory, in particular in
connection to the so called string theory landscape as well as in the study of
tachyon dynamics. For the String Theory landscape (Douglas, 2003; Kobakhidze
and Mersini-Houghton, 2004; Susskind, 2003), the scalar potential V (φ) is usually
thought as having many valleys, which represent the different vacua solutions, the
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México.

2 To whom correspondence should be addressed at; e-mail: socorro@fisica.ugto.mx.

2529
0020-7748/06/1200-2529/0 C© 2006 Springer Science+Business Media, Inc.



2530 Garcı́a, Guzmán, Sabido, and Socorro

hope is that the statistics of these vacua could explain, for example, the smallness
of the cosmological constant (the simplest candidate for dark energy). For tachyon
dynamics in the unstable D-brane scenario, the scalar potential for the tachyon
effective action around the minimum of the potential has the form V (φ) = e−αφ/2

(Sen, 2002, 2003). This leads to the study of tachyon driven cosmology (Garcia-
Compean et al., 2005; Gorini et al., 2004).

On another front, the study of eigenvalue problems associated with second-
order differential operators found a renewed interest with the application of the
factorization technique and its generalizations (Cooper et al., 1995; Fernández,
1984; Gelfand and Levitan, 1955; Mielnik, 1984; Nieto, 1984). SUSY-QM
may be considered an equivalent formulation of the Darboux transformation
method, which is well-known in mathematics from the original paper of Darboux
(Darboux, 1982; Ince, 1926). An essential ingredient is a differential operator
(Bagrov and Samsonov, 1995) which intertwines two hamiltonians and relates
their eigenfunctions. When this approach is applied in quantum theory it allows to
generate a family of exactly solvable local potential starting with a given exactly
solvable one (Cooper et al., 1995). In nonrelativistic one-dimensional supersym-
metric quantum mechanics, the factorization technique was applied to the q = 0
factor ordered WDW equation corresponding to the FRW cosmological models
without matter field (Rosu and Socorro, 1998), where a one-parameter class of
strictly isospectral cosmological FRW solutions was exactly found, representing
the wave functions of the universe for that case, also iso-spectral solutions for a
one-parameter family of closed, radiation-filled FRW quantum universe, and for
a perfect fluid with barotropic state equation and cosmological constant term, for
any factor ordering were found (Rosu and Socorro, 1996; Socorro et al., 2003).
In this formalism, the family of iso-potentials and wave functions are build with
respect to a parameter γi for which we choose the domain [0,∞]. The shape of
the wave function in the corresponding coordinates is obtained via the “evolution”
of the iso-wave function when this parameter tends to ∞.

The main purpose of this paper is to apply the Darboux transformation method
to obtain a family of iso-potentials, to the potential V (φ) = e−αφ/2, which appears
in inflationary cosmology. To reach this goal, we shall make use of the strictly
isospectral scheme based on the general Riccati solution (Cooper et al., 1995;
Fernández, 1984; Mielnik, 1984; Nieto, 1984), which is also known as the dou-
ble Darboux method. This scheme has been applied from classical and quantum
physics (Mielnik, 1984) to relativistic models (Samsonov and Suzko, 2003). This
technique has been known for a decade in one-dimensional supersymmetric quan-
tum mechanics (SUSY-QM) and usually requires nodeless, normalizable states of
a Schrödinger-like equation. However, Pappademos et al. (1993) showed that the
strictly isospectral construction can also be performed on non-normalizable states.
The resulting potentials have interesting features, in particular they solve the one
problem the exponential potential has, the lack of a mechanism to end inflation.
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This work is organized as follows. In Section 2 we present the classical action
with the corresponding contributions, this action includes a gravitational part Sg ,
and Sφ for the scalar field; also we present the standard quantum scheme with the
quantum solution, which plays an important role in the isospectral solutions. In
Section 3 we review the factorization approach of (Susy-QM) and apply it to the
inflationary model. Finally Section 4 is devoted to conclusions and outlook.

2. THE STANDARD QUANTUM SCHEME

We start with the line element for a homogeneous and isotropic universe, the
so called Friedmann-Robertson-Walker (FRW) metric, in the form

ds2 = −N2(t)dt2 + e2α(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2θdϕ2)

]
, (1)

where a(t) = eα(t) is the scale factor, N (t) is the lapse function, and κ is the
curvature constant that takes the values 0,+1,−1, which correspond to a flat,
closed or open universe, respectively.

The effective action we will be working, is (Guzmán et al., 2005)

Stot = Sg + Sφ =
∫

dx4√−g

[
R + 1

2
gµν∂µφ∂νφ + V0e

− λ√
12

φ

]
, (2)

φ is a scalar field endowed with a scalar potential V (φ) = V0e
− λ√

12
φ .

The Lagrangian for a FRW cosmological model is

L = e3α

[
6
α̇2

N
− 1

2

φ̇2

N
+ N

(
V (φ) − 6κe−2α

)]
, (3)

At this point, we consider a flat universe (κ = 0)

L = e3α

[
6
α̇2

N
− 1

2

φ̇2

N
+ NV (φ)

]
, (4)

The canonical momenta are found to be


α = ∂L
∂α̇

= 12e3α α̇

N
, α̇ = N

12
e−3α
α , (5a)


φ = ∂L
∂φ̇

= −e3α φ̇

N
, φ̇ = −Ne−3α
φ . (5b)

We are now in position to write the corresponding canonical Hamiltonian (Ryan,
1972)

Lcanonical = 
αα̇ + 
φφ̇ − NH, (6)
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where H is the classical Hamiltonian function, having the following structure

H = 1

24
e−3α

[

2

α − 12
2
φ − 24e6αV (φ)

]
, (7)

and performing the variation of (6) with respect to N, ∂L/∂N = 0, implies the
well-known result H = 0. The Wheeler-DeWitt (WDW) equation for this model
is achieved by replacing 
qµ by −i∂qµ in Eq. (7); here qµ = (α, φ).

Under a particular factor ordering the WDW reads

Ĥ = e−3α

24

[
− ∂2

∂α2
+ 12

∂2

∂φ2
− 24e6αV (φ)

]
� = 0. (8)

or

� � − 24e6αṼ (φ)� = 0 , (9)

with φ̃ = φ√
12

, � is called the wave function of the universe, � ≡ −∂2
α + ∂2

φ̃
is

the two dimensional d’Alambertian operator in the qµ coordinates. From now
on we fix the potential to V (φ) = e−λφ̃ . Applying the factorization method in
these variables is technically cumbersome, this can be simplified if we make the
following coordinates transformation,

x = 6α − λφ̃, y = α − 6

λ
φ̃, (10)

the WDW Eq. (9) takes the form

∂2�

∂x2
− 1

λ2

∂2�

∂y2
− 24V0

λ2 − 36
ex� = 0 (11)

and by separation variables, � = X(x)Y (ỹ) with ỹ = λy, we obtain the set of
differential equation for the functions X and Y

d2X

dx2
+

(
−βex + η2

4

)
X = 0,

d2Y

dỹ2
+ η2

4
Y = 0, (12)

where

β = 24V0

λ2 − 36
, (13)

we choose for simplicity η2

4 as a separation constant. The solutions for these
equations are

X(x) = Z±iη

(
±2i

√
βex/2

)
, (14)

Y (ỹ) = A0e
i

ηλ

2 ỹ + A1e
−i

ηλ

2 ỹ , (15)
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with Z±iη are generic Bessel Functions with pure imaginary order, the wave
function is

�η(x, ỹ) = e±i
ηλ

2 ỹZiη

(
±2i

√
βex/2

)
. (16)

Since these solutions have the dependence in the parameter η, the general
solution can be put as

�gen =
∫

G(η)�ηdη, (17)

where G(η) represents a weigh function.
The selection of the value of λ in (13), gives the structure for the Z±iη, for

λ > 6, we have the modified Bessel function, and for 0 < λ < 6, Z±iη become
the ordinary Bessel function. We are now in a position to form a normalizable
Gaussian state as a superposition of the eigenfunctions (16). With this in mind a
wave packet can be constructed (Kiefer, 1988, 1990).

We can have different solutions that depend on the value of the parameter λ.
For λ > 6, the wave packet can be constructed using the modified Bessel function
(see Gradshteyn and Ryzhik, 1980)

�(x, ỹ) =
∫ ∞

0
cos

(
ηλ

2
ỹ

)
Kiη

(
±2

√
βex/2

)
dη

= π

2
Exp

[
−2

√
βex/2 cosh

(
λ

2
ỹ

)]
. (18)

In the range 0 < λ < 6 (which includes the inflation), we can also construct a
wave packet, but this time using the ordinary Bessel functions

�(x, ỹ) =
∫ ∞

−∞

eπx/2

sinh (πx)
cos

(
ηλ

2
ỹ

)
Jiη

(
±2

√
βex/2

)
dη

= −iExp

[
i2

√
βex/2 cosh

(
λ

2
ỹ

)]
. (19)

We have been using the new variables x and ỹ. Let us now extract some information
from the semiclassical behavior as a check of our quantum model. The classical
solutions can be obtained using the semiclassical analysis (WKB-like method).
For this, one considers the ansatz on the wave function

�(α, φ) = e−S, (20)

and the conditions(
∂S

∂a

)2

�
∣∣∣∣∂

2S

∂a2

∣∣∣∣ ,
(

∂S

∂φ

)2

�
∣∣∣∣∂

2S

∂φ̃2

∣∣∣∣ , (21)
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from this, the Einstein-Hamilton-Jacobi equation (EHJ) is obtained, and Eq. (9)
reads (

∂S

∂α

)2

−
(

∂S

∂φ̃

)2

− 24V0e
6α−λφ = 0, (22)

The same equation is recovered directly when we introduce the transforma-
tion on the canonical momentas


qµ → ∂S

∂qµ
, (23)

in Eq. (7), in the new coordinates x and y, this equation takes the form(
∂S

∂x

)2

−
(

∂S

∂ỹ

)2

− βe−x = 0. (24)

and choosing S = SxSy we obtain the following solutions

Sx = ± 2√
βµ

e−x/2,

Sỹ = µ = cte. (25)

so we get,

S(x, ỹ) = ±2
√

βe−x/2. (26)

Equation (23) in the new variables become


α = ± 6√
β

e−x/2 = ± 6√
β

e3α− λ
2 φ,


φ = ∓ λ√
β

e−x/2 = ± λ√
β

e3α− λ
2 φ, (27)

The classical behaviour is considered solving the relations between (27) and
Eqs. (5a,5b), obtaining the relation for the the scale factor and the scalar field

a = a0e
1

2λ
φ̃ , (28)

the corresponding time behaviour (dτ = Ndt),

a = a0τ
2
λ2 ,

φ̃ = 2

λ
Ln

(
λ2

4
√

3β
τ + φ̃0

)
, (29)

having an inflationary scenario for the scale factor, with increasing power law
when λ <

√
2. This is the result from the classical approach (Chimento and

Jakubi,1996). Unfortunately this potential has a serious drawback, once we fix the
value of λ to for inflation, there is no way to end it.
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3. SUPERSYMMETRIC FACTORIZATION SCHEME

As already mentioned, the goal of this paper is to use the factorization ap-
proach of supersymmetric quantum mechanics to obtain the family of isoespectral
potentials to V (φ) = e−λφ̃ , an see if these potentials lead to new physics.

If a quantum system is characterized by Hamiltonian H with eigenvalues ν,
we may ask if there exists another Hamiltonian (i.e. different potential) which has
the same spectrum. This is an interesting question because we may not be able
to distinguish one system from the other by making them physically equivalent.
With this in mind, we will begin by reviewing the factorization approach.

Lets start with the hamiltonian that appears in the study of scalar fields
interacting with gravitation Eqs. (11, 12), written in generic form as

−d2Pi

dq2
i

+ Vi(qi)Pi = EiPi, Pi = (X, Y ), qi = (x, y),

Ei =
{

ν2

4µ2

B2ν2

µ2

,

Vi =
{− 6

µ2 e
x

0
. (30)

It is easy to show that the first order differential operators

A+
i = − d

dqi
+ Wi(q

i), (31)

A−
i = d

dqi
+ Wi(q

i), (32)

factorize the hamiltonian, l.h.s. of Eq. (30)(here Wi plays the role of a superpo-
tential function) as

H+
i − Ei = A+

i A−
i i = 1, 2. (33)

The potential term Vi(qµ) is related to the superpotential function Wi(qµ) via the
Riccati equation3

Vi(q
i) − Ei = W 2

i − dWi

dqi
, i = 1, 2 (34)

Making the transformation

Wi = −u′
i

ui

, i = 1, 2 (35)

3 We shall call V +
i to Vi in (14) and (15).
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where the ′ means d
dqi , (34) is transformed into the original hamiltonians applied to

the functions ui that correspond to the solutions (14,15), this implies that once we
have a solution to the original Schrödinger like Eq. (30) the superpotential function
can be constructed. In this factorization scheme, V −

i is the partner superpotential
of V +

i , and can be calculated by performing the product

H−
i − Ei = A−

i A+
i , H−fi(q

i) = Eifi(q
i), (36)

where fi is the wave function related to the hamiltonian H−
i . Then, the isospectral

potential to V +
i (qi) is

V −
i (qi) − Ei = W 2

i + W ′
i . (37)

Using (34), we get the functional relation between V −
i and V +

i , being

V −
i (qi) = V +

i (qi) + 2W ′
i . (38)

However, this is not the most general solution as will be shown in the following
section.

3.1. General Solution

The general solution to the Ricatti equation (38) is found from (Cooper et al.,
1995; Mielnik, 1984)

V −
i (qi) − Ei = Ŵ 2

i + Ŵ ′
i ≡ W 2

i + W ′
i , (39)

which by choosing

Ŵi ≡ Wi + 1

yi

, (40)

leads to a Bernoulli equation for yi ,

y ′
i − 2Wi yi = 1, (41)

whose solution is

yi(q
i) = Ii + γi

u2
i

, (42)

where Ii(qi) = ∫ qi

0 u2
i dx and γi is the factorization parameter (γi plays the role of

a “time-like parameter” in the evolution of the isospectral wavefunction).
By using Eq. (42), we may write Eq. (40) as

Ŵi(q
i) = Wi + u2

i

Ii + γi

, (43)

and, the entire family of bosonic potentials can be constructed from

V̂ +
i (qi, γi) − Ei = Ŵ 2

i (qi, γi) − Ŵ ′
i (q

i, γi), (44)
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or

V̂ +
i (qi, γi) = V −

i − 2Ŵ ′
i

= V +
i (qi) − 4

uiu
′
i

Ii + γi

+ 2
u4

i

(Ii + γi)2
, (45)

finally

ûi ≡ g(γi)
ui

Ii + γi

, (46)

is the isospectral solution of the Schrödinger equations (14, 15) for the new family
of potentials (45), with the condition on the function g(γi) = √

γi(γi + 1), though
in the limit

γi → ∞ g(γi) → γi and ûi → ui. (47)

Considering the particular case for λ <
√

2 (which correspond to inflation), we
plot the solutions in the variable x = 6α − λφ̃ for the isospectral potential (45)
(Figs. 1, 2 and 3) and the corresponding wavefunctions (46) (Figs. 4 and 5). The
total WDW isospectral wave function has the following form

�iso(x, ỹ; γ1, γ2) =
[
Jiη

(±2
√

βex/2
) + J−iη

(±2
√

βex/2
)]

I1 + γ1
×

[
a0e

i
ηλ
2 ỹ + a1e

−i
ηλ
2 ỹ

]
I2 + γ2

. (48)

Fig. 1. Plot is of the original potential and the iso-potentials. At large
scale, the original potential and the iso-potentials do not differ much.
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Fig. 2. At small scale the iso-potential have new structure for small
values in the parameter γ , giving rise to a mechanism to end inflation
that is not present in the original potential.

The γi parameters are included not for factorization reasons (these wave functions,
in quantum cosmology are still non normalizable, except when a wave packet is
constructed), but as decoherence parameter embodying a sort of quantum cosmo-
logical dissipation (or damping) distance. The wave function is highly oscillatory,
but when the value of γi is increased, the iso-spectral wave function tends to the

Fig. 3. The corresponding changes in the structure for the isopotential,
mainly for small values in the γ parameter.
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Fig. 4. The iso-wave function for different values for the γ param-
eter. The behavior for small values of γ can be seen. This different
behavior can have effects in the quantum perturbations, and may
modify structure formation in the large scale universe.

wave function of the original potential (this is similar to the transitory effects in
quantum mechanics, i.e. probability density in a potential barrier). Unfortunately
this parameter γi can not be used to go from one physical state to another, so it is
not a time parameter in the usual sense. In other words, this parameter seems to
play the role of a “supersymmetric time-like parameter” that gives the evolution
from a supersymmetric state to the original state, and the usual behavior for the
wave function is reached (see Figs. 3 and 5).

In the plots of the potentials, we see that the difference between the original
potential and the isopotential are small at large scale (Fig. 1), but the corresponding
wavefunctions present a drastically different behavior to a point that it vanishes for
the limit γi → 0 and recovers the original shape when γi → ∞. But in all cases,
the roots of the wave functions remain the same. This can be attributed to the
different structure of the iso-spectral potential, as it appears in Figs. 2 and 3, in the
sense that the amplitude of the wavefunctions corresponding to the iso-potentials
in the regime x < 0, is reduced dramatically.

One expects that these effects should appear in the dynamics of our universe,
in particular in the inflationary epoch. For inflation we need material with the
unusual property of negative pressure (i. e. scalar fields), as already mentioned,
the potential V (φ) = e−λφ is one of the most studied. The standard approximation
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Fig. 5. This plot show how the iso-wave functions tend to original wave
function when the parameter γ → ∞.

technique for analyzing inflation is the slow-roll approximation given by the
slow roll parameter ε = 1

2 (V ′(φ)
V (φ) )2 	 1 in units of Mp = 1, in particular for the

exponential potential ε = 1
2λ2 	 1, this means that once we fix λ to have inflation,

there is no mechanism to end it (we can not violate the slow roll condition). For
the iso-spectral potentials we can see from the plot that we have an oscillatory
function superposed to the original potential and this oscillatory behavior leads
to mechanism that ends inflation. To see this, we start by writing the slow roll
parameter in terms of the potential V (x), it takes the form ε = 1

2a2(V ′(x)
V (x) + b)2,

where a = 36−λ2

λ
and b = 36

λ2−62 , for the original potential V ′(x)
V (x) = 1. So again,

once we fix the value of λ to have inflation there is no way to end it. For the
iso-spectral potentials the approximate relation holds Viso(φ)

V (φ) ≈Viso(x)
V (x) where Viso(x)

is the iso-spectral potential, and again we may write the slow roll parameter in
a similar way ε = 1

2a2(V ′
iso(x)

Viso(x) + b)2, where the constants a and b depend at most
on λ, now in contrast with the original potential, once we fix the value of λ for
inflation, the ratio V ′

iso(x)
Viso(x) can be as large as we want. We can see this from the

plots of the iso-potentials. If γi is small, the potential is oscillatory and has several
roots. In particular near one of the roots xi V ′

iso �= 0, but V (x) → 0 as x → xi ,
that is, in the neighborhood of xi ,

Viso(x)
V (x) is large, violating the slow-roll conditions,

this gives the mechanism to end inflation!. Moreover, once inflation has ended the
iso-potentials have several minima, where the scalar field can oscillate and start
the reheating process. Finally there is a non zero probability that the scalar field
may tunnel out of this minimum and give start another inflationary epoch.
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4. CONCLUSIONS AND OUTLOOK

In this paper we have applied the factorization method to inflationary cos-
mology, we started with a scalar field model coupled to and FRW model and an
exponential potential V (φ) = V0e

−λφ . We have shown that in the variables x and
y we can reproduce the known result, that for λ < 2 and get power law infla-
tion. This new set of variables is important to apply the factorization approach
of SUSY-QM, from which we have obtained a complete family of iso-spectral
potentials and their corresponding wave functions. We have shown in the plots,
that we obtain the original potential and wave function in the limit γi → ∞. Out of
this limit we have a large class of potentials that have the same quantum spectrum
(this can clearly be seen in Fig. 5). Therefore all of these potentials describe the
same quantum system. These iso-potentials have a very similar behavior for large
scales, so at the classical level we won’t see different dynamics. The drastic differ-
ences in the iso-wave functions and the iso-potentials, have an impact on the the
dynamics of the universe. We have seen that this family of iso-potentials, have a
natural mechanism to end inflation, and present the possibility of new inflationary
epochs. We have found that the γi parameter plays the role of a decoherence pa-
rameter that embodies a type of quantum cosmological damping distance. In other
words, it plays the role of a supersymmetric time-like parameter. This procedure
can be applied to other models like, tachyon driven cosmology (Garcia-Compean
et al., 2005), or to toy models of the landscape of string theory (Kobakhidze and
Mersini-Houghton, 2004). These results may point to the existence of other po-
tentials with the same eigenvalue spectrum, so that in principle the landscape may
be falsifiable. These ideas are being explored and will be presented elsewhere.
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quantum cosmology, gr-qc/0506041.
Ince, E. L. (1926). Ordinary Differential Equations, Dover, New York.
Junker, G. (1996). Supersymmetric Methods in Quantum and Statistical Physics, Springer, Berlin.
Kiefer, C. (1988). Physical Review D 38, 1761.
Kiefer, C. (1990). Nuclear Physics B 341, 273.
Kobakhidze, A. and Mersini-Houghton, L. hep-th/0410213.
Mersini-Houghton, L. (2005). Classical and Quantum Gravity 22, 3481–3490.
Mielnik, B. (1984). Journal Mathematical Physics 25, 3387.
Nieto, M. M. (1984). Physics Letters B 145, 208.
Pappademos, J., Sukhatme, U., and Pagnamenta, A. (1993). Physical Review A 48, 3525.
Rosu, H. and Socorro, J. (1996). Physics Letters A 223, 28.
Rosu, H. and Socorro, J. (1998). Il Nuovo Cimento B 113, 683.
Ryan, M. Jr. (1972). Hamiltonian Cosmology, Springer Verlag.
Samsonov, B. F. and Suzko, A. A. Discrete supersymmetries of the Schrödinger equation and non-local

exactly solvable potential, quant-ph/0301109.
Sen, A. (2002). Modern Physics Letters A 17, 1797.
Sen, A. (2003). International Journal Modern Physics A 18, 4869.
Socorro, J. Reyes, M. A., and Gelbert, F. A. (2003). Physics Letters A 313, 338-342.
Susskind, L. hep-th/0302219.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


